An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000
#include <iostream> #include <vector> void champernowneConcat(int foo, std::vector<int> &bar); int main(void) { std::vector<int> decBuff; // Set to 1 to multiply against unsigned long long total = 1; // Start building up the Champernowne constant for(int i = 1; decBuff.size() <= 1000000; i++) { champernowneConcat(i, decBuff); } // Calculate the total total *= (decBuff[0] * decBuff[9] * decBuff[99] * decBuff[999] * decBuff[9999] * decBuff[99999] * decBuff[999999]); std::cout << "The answer is " << total; return 0; } void champernowneConcat(int foo, std::vector<int> &bar) { std::vector<int> vecBuff; // separate vector to append from, as opposed to incremented iterator to back while(foo) // while the number is not 0 { vecBuff.insert(vecBuff.begin(), (foo % 10)); // pull the ones spot out foo /= 10; // divide equal 10 to effectively shift number right } for(auto it : vecBuff) // iterate through and append, effective with how short the calculations are { bar.push_back(it); } return; }